Author Affiliations
Abstract
1 Sapienza Università di Roma, Dipartimento di Fisica, Roma, Italy
2 Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
Estimation of physical quantities is at the core of most scientific research, and the use of quantum devices promises to enhance its performances. In real scenarios, it is fundamental to consider that resources are limited, and Bayesian adaptive estimation represents a powerful approach to efficiently allocate, during the estimation process, all the available resources. However, this framework relies on the precise knowledge of the system model, retrieved with a fine calibration, with results that are often computationally and experimentally demanding. We introduce a model-free and deep-learning-based approach to efficiently implement realistic Bayesian quantum metrology tasks accomplishing all the relevant challenges, without relying on any a priori knowledge of the system. To overcome this need, a neural network is trained directly on experimental data to learn the multiparameter Bayesian update. Then the system is set at its optimal working point through feedback provided by a reinforcement learning algorithm trained to reconstruct and enhance experiment heuristics of the investigated quantum sensor. Notably, we prove experimentally the achievement of higher estimation performances than standard methods, demonstrating the strength of the combination of these two black-box algorithms on an integrated photonic circuit. Our work represents an important step toward fully artificial intelligence-based quantum metrology.
quantum sensing integrated photonics machine learning for metrology 
Advanced Photonics
2023, 5(1): 016005
Author Affiliations
Abstract
1 Sapienza Università di Roma, Dipartimento di Fisica, Roma, Italy
2 Palacký University, Department of Optics, Olomouc, Czech Republic
3 Queen’s University Belfast, School of Mathematics and Physics, Centre for Theoretical Atomic, Molecular, and Optical Physics, Belfast, United Kingdom
4 Università degli Studi di Palermo, Dipartimento di Fisica e Chimica-Emilio Segrè, Palermo, Italy
Experimental engineering of high-dimensional quantum states is a crucial task for several quantum information protocols. However, a high degree of precision in the characterization of the noisy experimental apparatus is required to apply existing quantum-state engineering protocols. This is often lacking in practical scenarios, affecting the quality of the engineered states. We implement, experimentally, an automated adaptive optimization protocol to engineer photonic orbital angular momentum (OAM) states. The protocol, given a target output state, performs an online estimation of the quality of the currently produced states, relying on output measurement statistics, and determines how to tune the experimental parameters to optimize the state generation. To achieve this, the algorithm does not need to be imbued with a description of the generation apparatus itself. Rather, it operates in a fully black-box scenario, making the scheme applicable in a wide variety of circumstances. The handles controlled by the algorithm are the rotation angles of a series of waveplates and can be used to probabilistically generate arbitrary four-dimensional OAM states. We showcase our scheme on different target states both in classical and quantum regimes and prove its robustness to external perturbations on the control parameters. This approach represents a powerful tool for automated optimizations of noisy experimental tasks for quantum information protocols and technologies.
orbital angular momentum state engineering black-box optimization algorithm quantum walk 
Advanced Photonics
2021, 3(6): 066002
Author Affiliations
Abstract
1 Technical University of Denmark, CoE SPOC, Department of Photonics Engineering, Lyngby, Denmark
2 Sapienza Università di Roma, Dipartimento di Fisica, Roma, Italy
3 Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Roma, Italy
Entanglement distribution between distant parties is one of the most important and challenging tasks in quantum communication. Distribution of photonic entangled states using optical fiber links is a fundamental building block toward quantum networks. Among the different degrees of freedom, orbital angular momentum (OAM) is one of the most promising due to its natural capability to encode high dimensional quantum states. We experimentally demonstrate fiber distribution of hybrid polarization-vector vortex entangled photon pairs. To this end, we exploit a recently developed air-core fiber that supports OAM modes. High fidelity distribution of the entangled states is demonstrated by performing quantum state tomography in the polarization-OAM Hilbert space after fiber propagation and by violations of Bell inequalities and multipartite entanglement tests. The results open new scenarios for quantum applications where correlated complex states can be transmitted by exploiting the vectorial nature of light.
orbital angular momentum quantum communication structured light multimode fiber multipartite entanglement 
Advanced Photonics
2019, 1(4): 046005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!